

SpineOpt

Empowering the Design of Resilient & Integrated Energy Systems

TABLE OF CONTENT

ACRONYMS	3
SPINEOPT'S TECHNICAL DESCRIPTION	5
USE CASE 1. REAL-WORLD APPLICATIONS	C
SPINE H2-IRL	6 _
Business as usual	7
Electricity network	8
Hydrogen Network	9
Full Network	10
Technology Breakthrough	11
Alternative Net Zero	12
All Options	13
USE CASE 2. THEORETICAL APPLICATIONS	
OFFSHORE INFRASTRUCTURE	15
Baseline	17
ElectrifyPFS	18
ElectrifyOffWT	19
RepurpBlueH2	20
RepurpGreens	21
SPINEOPT'S FEATURES	23

ACRONYMS

BECCS Bioenergy with Carbon Capture and Storage

CCS Carbon Capture & Storage

CO₂ Carbon dioxide

H₂ HydrogenO&G Oil & Gas

LDES Long-Duration Energy Storage

RES Renewable energies
PFS Power From Shore

SMR Steam Methane Reforming

Future energy systems must rely on sustainable but variable energy sources, making flexibility crucial. This includes storage, sector coupling, demand response, and transferring energy across networks. These approaches help balance supply and demand cost-effectively. Due to uncertainties and limited computational resources, models should focus on essential system features.

SpineOpt is designed to support flexible, purpose-driven modeling to address specific energy challenges and uncertainties.

INTRODUCTION

SPINEOPT'S TECHNICAL DESCRIPTION

SpineOpt is an **integrated energy systems optimisation tool**, striving towards adaptability for a multitude of modelling purposes. The data-driven tool structure SpineOpt relies on JuMP for interfacing with the different solvers. allows for highly customisable energy system descriptions, as well as for flexible temporal and stochastic structures, without the need to alter the tool source code researchers, policymakers, and energy planners aiming to model and optimise directly.

The methodology is based on mixed-integer linear programming (MILP), and SpineOpt's versatility and user-centric design make it a valuable tool for energy systems in a dynamic and uncertain environment.

USE CASE 1. REAL-WORLD APPLICATIONS

SPINE H2-IRL

Hydrogen-based technologies hold significant potential for the decarbonisation of Ireland's future energy system, but challenges remain regarding supply security, reliability, and flexibility. There is potential to make renewable energy generation more economical, leading to increased deployment of onshore and offshore wind and solar power. This will present new grid challenges, resulting in greater variability and uncertainty, and it will necessitate enhanced flexibility. Potential solutions include long-term storage, flexible hydrogen-based generation technologies, and batteries. However, the complex interdependencies between these technologies make the system difficult to model accurately.

The Spine H2-IRL builds on previous work using an open approach to address these unresolved questions. Existing models have been refined, expanded, and new models developed, including a reliability assessment model. The goal of Spine H2-IRL is to develop and publish open models for a comprehensive assessment of a future Irish energy system with widespread hydrogen production and consumption, alongside other net-zero solutions.

This is complemented by analyses using these models to demonstrate their utility and provide valuable insights into the future development of Ireland's energy system. The detailed models enable investment optimisation across sectors while considering network constraints, long- and short-term storage optimisation, and operational details. Additional models offer more comprehensive flexibility and reliability assessments.

Seven future energy system scenarios are implemented and evaluated with SpineOpt, providing insights into barriers and opportunities for large-scale hydrogen deployment. The scenarios focus on a net-zero electricity system with high levels of electrification, marking a significant step towards a net-zero energy system. While non-electrical demands in the building and transport sectors are not explicitly modelled, a substantial portion of demand is captured under high electricity demand assumptions, along with the associated decarbonisation.

SpineOpt - infopack	7		Ireland Use Case		
SCENARIO 1 BUSINESS	AS USUAL				
influencing investments in	target, this scenario still relies on fossil fuels, wi alternative solutions. Modest hydrogen demand estment in electrolysers and storage. This scenar core hydrogen scenarios.	will emerge in hubs around			
FEATURES CARBON PRICE A high carbon price justified low-carbon technologies	HYDROGEN ROLE s investment in Enough hydrogen is for power generation	produced, but not used	RENEWABLE ENERGY 29.5 GW renewables backed Carbon Capture Storage su		
	INEFFICIENT No decarbonisation of other sectors, as hydroged demand, and no net zero target is in place.	en is only used to meet low	2,01 MTonne CO ₂ emitted	3,6 B€ investment needed	

SpineOpt - infopack		8		Ireland Use Case		
SCENARIO 2 ELECTRIC	ITY NETW	ORK				
26.8 GWh of grid-scale ba	atteries, and hydrogen-fuelle cale H₂ infrastructure, modes	y transmission expansion, reled dispatchable generation. St H₂ storage and avoided em				
FEATURES NET ZERO CONSTRAINT Enforced, the system must net-zero CO ₂ emissions		HYDROGEN ROLE H ₂ meets low demand, H ₂ -fu generation provides most o		LARGE-SCALE INFRASTR Electricity transmission invector excluding grid or H ₂ infrast	estments allowed,	
	INEFFICIENT H ₂ -based net zero system point inefficient and expense	possible even in absence of la	arge-scale H ₂ infrastructure	1,16 MTonne CO ₂ emitted	11,6 B€ investment needed	

SpineOpt - infopack	9	Ireland Use Case		
SCENARIO 3 HYDROGEN NETWO	PRK			
A net-zero scenario with large-scale hydrogen infrast H ₂ production and dispatch. RES capacity reaches 49. hydrogen demand yields greater avoided emissions a though still 35% above Business as Usual.	7 GW, with hydrogen displacing grid batteries. High			
FEATURES NET ZERO CONSTRAINT Enforced for the power system, guiding investment decisions.	HYDROGEN ROLE H ₂ production meets high demand. Hydrogen-fuelled electricity generation supplies key dispatchable capacity.	LARGE-SCALE INFRASTRU Included and expanded gas infrastructure, enabling mor operation.	and hydrogen	
PARTIALLY EFFICIEN Good scenario only if large Otherwise, high cost to pro	e-scale H ₂ infrastructures are available.	0,79 MTonne CO ₂ emitted	4,9 B€ investment needed	

SpineOpt - infopack	10		Ireland Use Case		
SCENARIO 4 FULL NETWC	PRK				
efficiency gains. With 48.7 GW RES	on and hydrogen infrastructure, this net-zero 5, reduced battery needs, and salt cavern stor ork case. High H₂demand yields significant av al.	age, system costs drop			
FEATURES CARBON PRICE Enforced, driving investment decis CO ₂ emissions.	HYDROGEN ROLE ions toward zero Hydrogen Role H ₂ meets high demand, H generation powers dispa Net-negative emissions.		RENEWABLE ENERGY Includes investments in transinfrastructure, and salt cave		
More ef	NTIALLY EFFICIENT ficient and cost-effective if transmission exp nes is facilitated.	pansion	0,79 MTonne CO ₂ emitted	4 ,7 B€ investment needed	

SpineOpt - infopack	1	1		Ireland Use Case		
SCENARIO 5 TECHNOL	OGY BREA	KTHROUG	Н			
build-out with increased e	higher efficiency for hydroge electrolyser and storage cap the Full Network case, narrow	acity. RES reaches 48.9 GW	V, batteries drop to 0.6			
FEATURES NET ZERO CONSTRAINT Enforced, guiding investme CO ₂ emissions.	ents to achieve net-zero	HYDROGEN ROLE H ₂ meets high demand; H ₂ -function supplies dispatch Result: net-negative emission	uelled electricity nable load.	LARGE-SCALE INFRASTRU Includes investments in botand hydrogen infrastructur	th electricity transmission	
	POTENTIALLY EFFICIE H ₂ technology costs and effic			0,79 MTonne CO ₂ emitted	4,2 B€ investment needed	

SpineOpt - infopack		12		Ireland Use Case		
SCENARIO 6 ALTERNA	TIVE NET 2	ZERO				
alongside 32.8 GW of RE electrolysers. While costs	S. No hydrogen-fuelled pov	rastructure, relying on CCS, B wer is used; low H₂ demand is zero cases, decarbonisation b logies.	met with 1 GW of			
FEATURES NET ZERO CONSTRAINT Enforced, transmission involarge-scale H ₂ infrastructu	vestments allowed; no	HYDROGEN ROLE Low H ₂ demand met via 1 G supplemented by minor bar	·	LARGE-SCALE INFRASTRU Fossil fuel generation (inclu BECCS permitted.		
	storage and alternative LI	NT echnologies become viable (e DES 1 technologies), a net-zero It - e.g. no H ₂ infrastructure av	o electricity system is less	1,16 MTonne CO ₂ emitted	4 ,1 B€ investment needed	

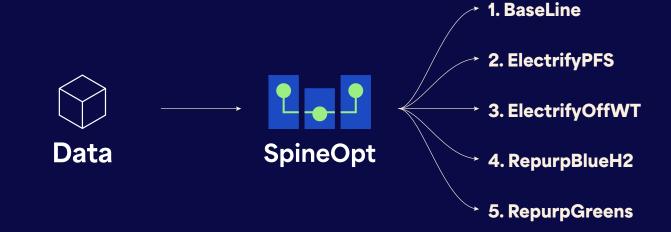
SpineOpt - infopack		13	Ireland Use Case		
SCENARIO 7 ALL OPTIO	NS				
with CCS) and 37.9 GW of R	ES. Electrolyser and batte	ture with CCS, using hydrogen-fuelled gas (mainly ry capacities rise to meet high H₂ demand and ough case, while enabling deep emissions cuts across			
FEATURES NET ZERO CONSTRAINT Enforced, allowing both larg infrastructure and CCS investigations.		HYDROGEN ROLE H ₂ meets high demand; H ₂ -fuelled gas (mainly with CCS) and electrolyser capacity reaches 5 GW.	LARGE-SCALE INFRASTRU Investments in H₂ production GW), electricity transmission storage support high demanded	on, renewables (37.9 on, and 0.95 GWh battery	
T (\sqrt{	FFICIENT he combination of technology educed emissions.	ologies delivers efficient solutions and helps achieve	0,79 MTonne CO ₂ emitted	4,3 B€ investment needed	

	SpineOpt - infopack	14		Ireland Use Case
1	BUSINESS AS USUAL	2,01	3,6	INEFFICIENT
2	ELECTRICITY NETWORK	1,16	11,6	INEFFICIENT
3	HYDROGEN NETWORK	0,79	4,9	PARTIALLY EFFICIENT
4	FULL NETWORK	0,79	4,7	POTENTIALLY EFFICIENT
5	TECHNOLOGY BREAKTHROUGH	0,79	4,2	POTENTIALLY EFFICIENT
6	ALTERNATIVE NET ZERO	1,16	4,1	PARTIALLY EFFICIENT
7	ALL OPTIONS	0,79	4,3	EFFICIENT
	Scenario	MTonne CO ₂ emitted	B€ investment needed	Conclusion

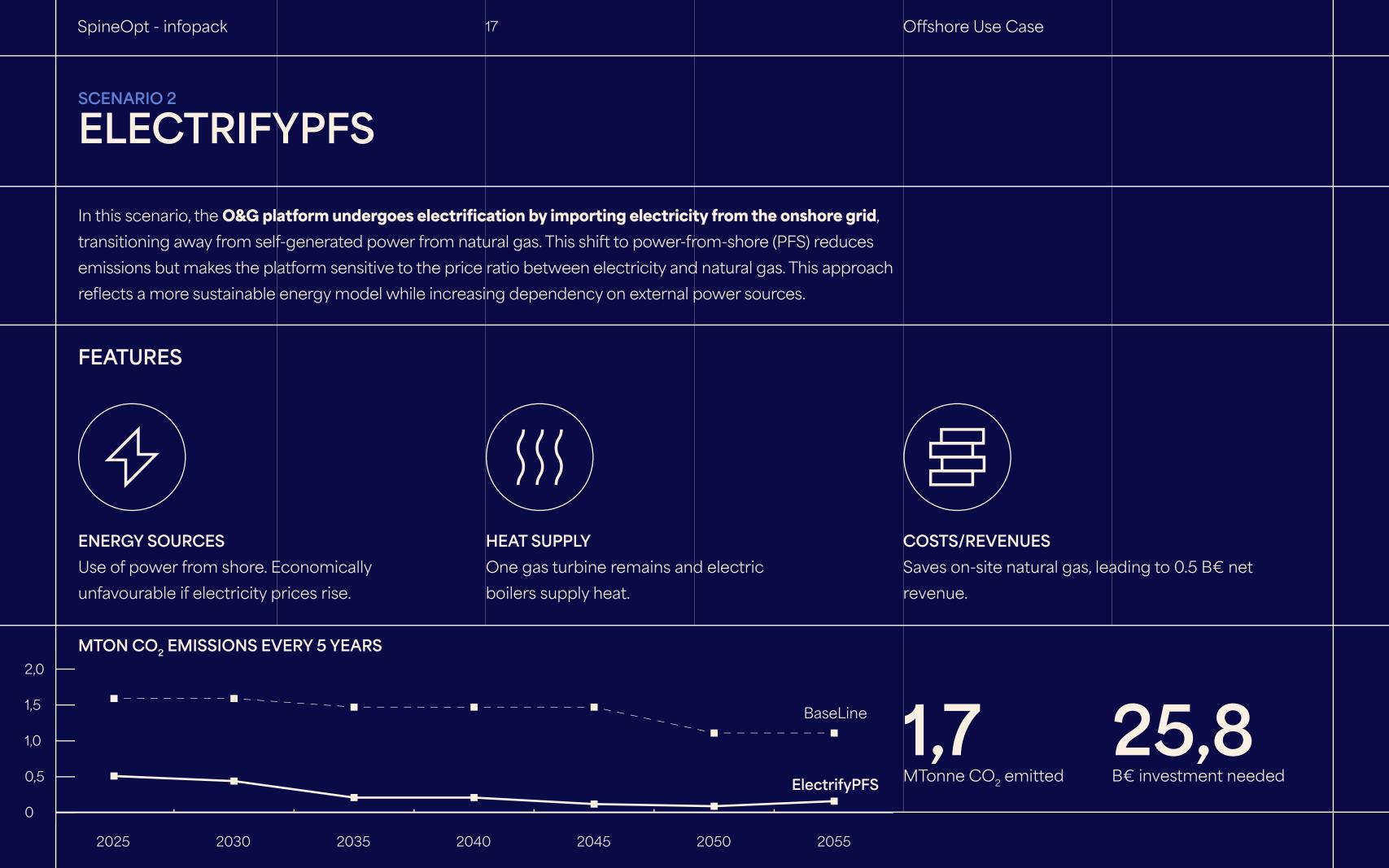
USE CASE 2. THEORETICAL APPLICATIONS

OFFSHORE INFRASTRUCTURE

SpineOpt can be used to **model asset-specific investment optimisation**, accounting for lumpy investments and the detailed operations of multivector energy systems. These investments can span multiple years, incorporate uncertainty, and consider refurbishing options alongside regular investments and decommissioning activities.

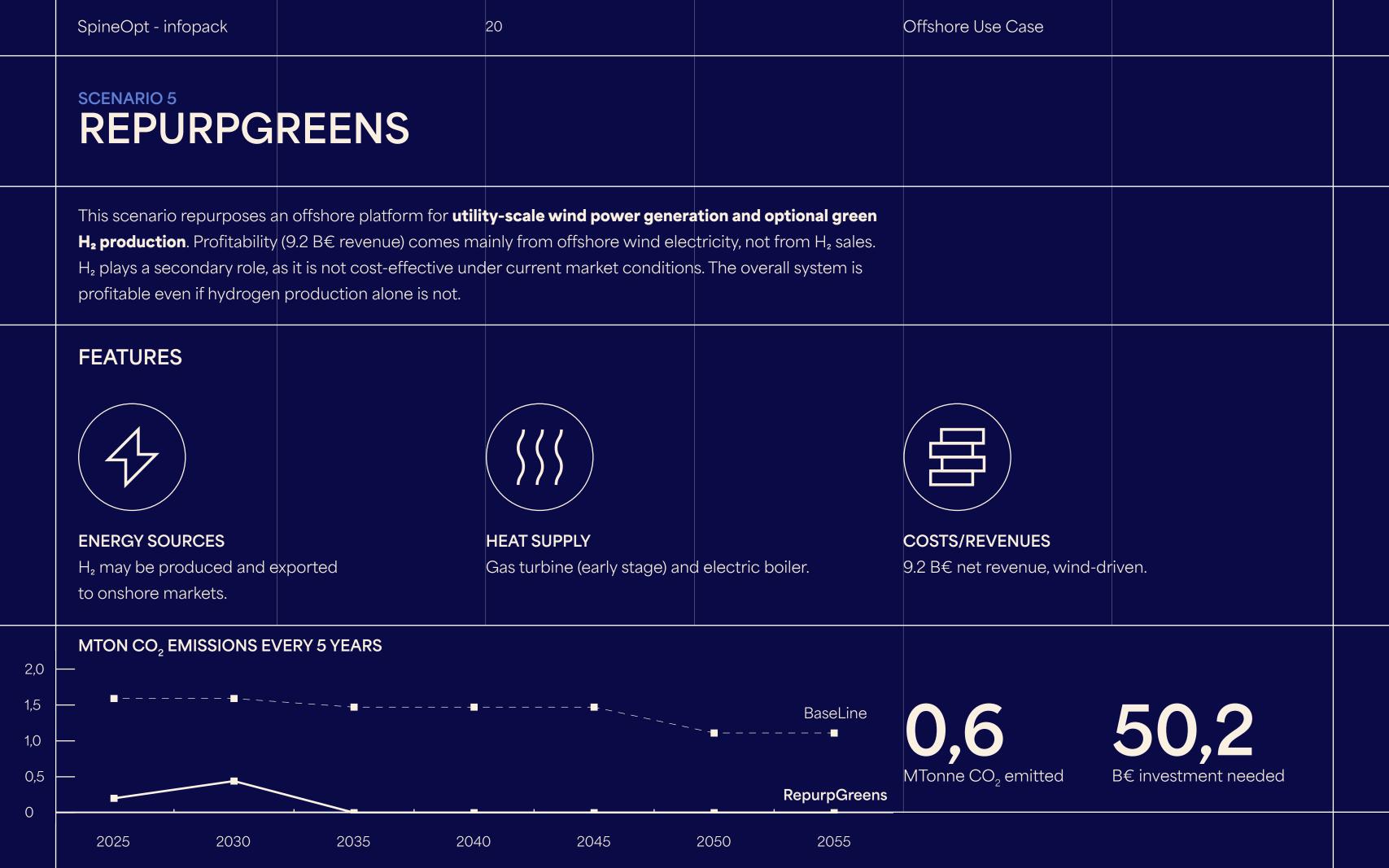

An offshore infrastructure transition study implements such an analysis. This case study aims to identify the least-cost option among various offshore oil and gas (O&G) platform development scenarios.

The study includes a **high level of detail**, representing the evolution of reservoir recovery, electrical and heat-related demands, electric boilers, contingency reserves (on-platform electrical power), the transport of produced fuels to shore, power from shore, offshore wind turbine-based electricity supply with or for green hydrogen (H₂) storage and generation (electrolyser, fuel cell, and H₂ tank), and blue H₂ by steam methane reforming (SMR) and carbon capture and storage (CCS).


Five scenarios with specific transition configuration options were simulated over a 4-decade horizon, with the scheduled decommissioning of the modeled platform at the end of the third decade:

- **1. BaseLine** for conventional O&G production operations on the modelled platform,
- 2. ElectrifyPFS for electrification by power from shore,

- 3. ElectrifyOffWT for electrification by dedicated offshore wind turbines,
- **4. RepurpBlueH2** for platform repurposing with SMR and CCS to utilize indigenous natural gas, and
- **5. RepurpGreens** for platform repurposing with a utility-scale offshore wind farm for green power or H₂ supply to the shore. In *ElectrifyOffWT*, H₂ serves solely for energy storage to smooth offshore wind power intermittency, whereas in *RepurpGreens*, H₂ may be exported to onshore markets for revenue.



	SpineOpt - infopack	21	Offshore Use Case	
1	BASELINE	9,8	24,9	
2	ELECTRIFYPFS	1,7	25,8	
3	ELECTRIFYOFFWT	0,6	24,7	
4	REPURPBLUEH2	0,1	30,7	
5	REPURPGREENS	0,6	50,2	
	Scenario	MTonne CO ₂ emitted	B€ investment needed	

SpineOpt - infopack 22 SpineOpt Features

FLEXIBLE MODELLING FEATURES

SPINEOPT'S FEATURES

FLEXIBLE MODELLING FEATURES

FLEXIBLE TEMPORAL STRUCTURE

The temporal structure uses different time resolutions for each energy carrier, giving higher accuracy with the same time steps as typical representative day methods. It also supports representative days with seasonal storage.

FLEXIBLE STOCHASTIC STRUCTURE

The stochastic framework allows for the integration of uncertainty through scenarios within the model, resulting in more robust outcomes. This stochastic structure can be applied to many parameters in the model.

FLEXIBLE MODELLING OPTIONS, INCLUDING:

Incorporation of multiple physics: power flows, pressure-driven gas flows, and heat diffusion.

Adding constraints that represent flexibility requirements (e.g., unit commitment, ramping, reserves, inertia, etc.).

User-defined constraints allowed to extend the model's capabilities.

SpineOpt - infopack 23 SpineOpt Features

BUILT-IN ALGORITHMS

ROLLING WINDOW OPTIMIZATION

This feature enables the solution of a series of sub-problems defined within successive - and potentially overlapping - rolling windows.

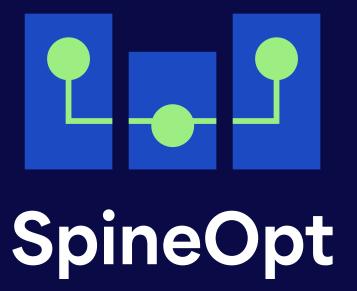
BENDERS DECOMPOSITION FOR INVESTMENT PROBLEMS

This method automatically defines and solves a two-stage decomposition algorithm for large-scale investment problems, where investment decisions are addressed in the master problem and operational decisions in the sub-problems.

MODELLING TO GENERATE ALTERNATIVES (MGA)

This approach explores near-optimal solutions that maximize or minimize investment in specific technologies (or multiple technologies simultaneously) while ensuring that the objective function remains within a certain threshold.

MULTI-STAGE OPTIMIZATION


This feature lets you create multiple linked optimization stages. For example, one stage may solve the whole year at daily resolution, while another refines seasonal storage at hourly resolution.

MONTE CARLO FUNCTIONALITY

Useful for resource adequacy studies, it defines multi-level scenarios and evaluates their impact on reliability. For example, it combines weather years and outages, solving them in parallel to get reliability metrics.

PATHWAY INVESTMENTS

SpineOpt provides the option for multi-year investments with milestone years, incorporating the economic representation of operations and investments over time, as well as the evolution of the technology mix with cost discounting.

Empowering the Design of Resilient & Integrated Energy Systems

Authors:

Technical content:

Niina Helistö (VTT), Diego Tejada Arango (TNO), Jody Dillon

(Energy Reform), Huang JiangYi (ETH Zurich)

Use cases: Jody Dillon, Huang Jiangyi

Texts: Erika Novellini (ICONS)

Graphic Design: Nicoletta Gomboli (ICONS)

- ★ TOOLS-FOR-ENERGY-SYSTEM-MODELLING.ORG
- in TOOLS FOR ENERGY SYSTEM MODELLING
- **▶** @MOPOPROJECT
- MOPO
- **W** MOPOPROJECT

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or European Climate, Infrastructure and Environment Executive Agency (CINEA). Neither the European Union nor the granting authority can be held responsible for them.